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Coupled-Mode Theory of Two Nonparallel
Dielectric Waveguides

MARK A. McHENRY AND DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract —A generaf theory for treating the coupfing between two

nonparallel dielectric waveguides is developed using the coupled-mode

assumption. This theory is used to anafyze directional couplers consisting

of two circularly curved, single-mode rfieleetric slab waveguides. By assum-

ing continuous coupfing between the two waveguides rather than only

between adjacent segments on the two waveguides, the present theory

avoids the awkwardness of having to specify in a somewhat arbitrary

manner the separation between these segment% as is the case for existing

theories reported in the literature. It is shown that this over-simplification

results often in an overestimate of the power transfer in a directional

coupler by 10-20 percent, compared to this theory.

I. INTRODUCTION

T HE COUPLING between dielectric waveguides has

received much attention [1]–[6] in the last decade in

light of the development of fiberoptic and, more recently,

integrated circuits in the optical and millimeter-wave bands.

Devices needed for future systems such as directional

couplers require that the coupling between waveguides be

understood so performance can be optimized. Although

coupling between p&-allel guides has been well understood

for some time [7], [8], coupling between nonparallel guides

is still not clearly understood, even though any physically

realizable device must have nonparallel connecting sections

where coupling takes place.

Making the coupled-mode assumption, many authors

use the results of the parallel case (i.e., the amount of

coupling is dependent on guide separation and other

parameters describing each guide in isolation), and pos-

tulate that, in a nonparallel configuration, there exists a

one-to-one correspondence between segments on each guide

with some function giving a “separation” to use in the

parallel results.

Matsuhara and Watanabe [4] assume this distance is

given along a line that intersects the guides at equal angles

(Fig. l(a)). Abouzahra and Lewin [3], for the symmetric

case, give the distance separating the guides along a line

normal to the plane of symmetry (Fig. l(b)) while Trinh

and Mittra [2] use the length of an arc intersecting both

guides at right angles (Fig. l(c)).
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Fig. 1. Various definitions for separation between individual segments
of two parallel guides.

By trying to stretch the results of the parallel case, we

find not only this problem of determining the “correct”

separation, but we overlook the real physical process of

interacting time-dependent fields. In the parallel case, any

z cross section will have fields with constant phase, while in

the nonparallel situation, the phase will not be constant

and will change as the configuration on either side of the

cross section is changed. Considering only some type of

separation between the guides will not completely describe

the coupling, because the effect one guide has on another

will depend very strongly on the phase, as well as the

strength, of the overlapping fields.

In this paper, coupled-mode theory is developed to

describe any configuration where the coupled-mode ap-

proximation is valid. Approximate coupling coefficients for

circularly bent, lossless, single TE-mode slab waveguides

are worked out allowing analysis of directional couplers

composed of straight and circularly bent slab wavegui ales.

II. COUPLED-MODE THEORY OF Two

NONPARALLEL WAVBGUIDES

The configuration to be analyzed is shown in Fig. 2. The

two guides can have different cross sections Al and A* and

dielectric c~ns~mts c1 a~d CZ, but the permeability (p) is

uniform: El, HI and E2, H2 are the two surface-wave
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Fig. 2. Two nonparallel dielectric waveguides.

mode fields each guide supports if the other guide is not

there; ~ and ~ are the time-dependent fields we are

interested in for the complete structure consisting of both

guides. We then define the functions ~l(x, y, z) and

c* (x, y, z) to represent the variation in the relative permit-

tivities when only guide 1 and guide 2, respectively, are

presented, i.e.

6,,,(X, y, z) = (“’’;3,‘:;e:s:’”.
Note that cl(x, y, z) = Cg (not cJ in the region guide 2

occupies and vice versa. Z(X, y, z) is the relative permittiv-

ity when both guides exist simultaneously.

The vectors ~1 and ~, can then be defined [1]

F1,2=E1,2x fi*+&%R 12. (1)

By using Maxwell’s equations and vector identities, it can

be shown that

V.F1,2 =j&lco(:– 61,2)E1,2.Z*. (2)

We make the usual coupled-mode assumption that the

total field of a system of two waveguides can be approxi-

mated in any given cross section by a linear combination of

the individual mode fields

x=rnl(z)E1 +nZ2(z)E2 (3)

fi=ml(z)R1 +nZ2(z)H2 (4)

where ml and m* are the amplitudes of the two modes at

z. Using the vector identity [1] over an infinite cross section

A

(5)

we get, from (1) through (5), a set of coupled differential

equations for ml(z) and m*(z)

j[mf(z)A1,2(z)+ m~(z)B1,2(z)]

=~[m~(z)c,,,(z)+ml(z)~,,,(z)](6)

where A, B, C, and D are cross-sectional integrals relating

the two individual mode fields

A1,2(Z) =/m/@(:(x, y, 2)–(1,2(X, y, z)) E1,2”E~dxdy
—03 —03

(7)

B1,2(Z) =JmJm(qx, y,z)–q2(x, y,z))E1,2. Efdxdy
—m —co

(8)
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Fig. 3. Globat and local coordinate systems.

C1,2(Z) = +---”j“ Lwm
—w —eo

+ Et x HI,*] .,?dxdy (9)

(lo)
In general, the coupling coefficients are complex functions

of z except for Cl and D2, which are real normalization

parameters.

We now introduce two locally orthogonal coordinate

systems (xl, Zl) and (xz, Z2) for the two guides as shown in

Fig. 3. If the z dependence of each guide in isolation is

exp [ – j/31,2zl,2], the coupling coefficients of parallel con-

figurations will have simple exp [ - j~ ‘z] dependence (/3’=

constant, possibly zero). In the nonparallel case, the in-

tegration on x at constant z includes a new term of the

form exp [ – j~ ‘(zI – Zz)], where ZI – Zz now is a function

of x. This phase term accounts for the interference of the

modal fields which, in the parallel case, does not exist

because all phase fronts are parallel.
Theories currently in the literature either assume that the

coupling coefficients are the same for the parallel case,

except that now the separation is changing in some arbi-

trary manner [3],[4], or that the amount of transferred

power depends on the spacing, as in the parallel case, and

define some “equivalent” separation to use at each z cross

section [2]. Both approaches neglect field interference in

the coupling coefficients which, as shown later, can lead to

significant errors.

We note that the use of equivalent current sources [9],
or, in the parallel case, the use of variational methods to

find the propagation constant of the system modes [8]

would appear to give different results. However, we have

shown in [10] that the coupled-mode assumption actually

leads to identical expressions for these approaches.

III. ANALYSIS OF COUPLERS FORMBD WITH

CIRCULARLY CURVED SLAB WAVEGUIDES

Fig. 3 shows two lossless, sin@e-TE-mode, circularly

bent slab waveguides and the relationship between the

different coordinate systems. We assume that the radius of

curvature of the slabs is large enough so that the field of

each bent guide in isolation is approtiately that of a

straight guide curved about a point. The fields of each
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guide in isolation are given in Appendix I. To-evaluate the

coupling coefficients AI,2, B1,2, C1,2, and D1,~ in (6), we

have to relate the coordin@e system for the guides (xl, Zl)

and (X2, Z2), to the global coordinate system as follows:

[ {(X1,2 = R1,2 1 –
l+ Z& ’&J+(*~}l’2]

(11)

~
(12)

~T~
1 + 2RI,2 R1,2

21,2 = R1,2tan-1

sine1,2 =

z

(( ))
1/2

R1,2+; Tx 2+Z2

A
cose1,2 =

((

R +DTX2+Z2 1’2”
1,2

T ))

(13)

(14)

Simplifying the expression for the coupling coefficients, we

note that the major contribution to the integrals comes

from areas near the guides. Also, to avoid radiation losses,

the radius of curvature of the bent slab waveguides inher-

ently must be large. These two facts allow us to expand

(11)-(14) linearly in x about each of the guides [10] and

find analytic solutions for the integrals in (7)-(10) (Ap-

pendix III). For example

{

S1l(Z)+T1l(Z)-X, x >0 (near guide 1)

‘1= S12(Z)+T12(Z).X, x <0 (near guide 2)

(15)

where Slj and Tlj are given in Appendix II. To solve the
remaining coupled differential equations, a second-order

Runge Kutta [11] algorithm was used. The approximate

coupling coefficients were compared with “exact” numeri-

cal integration of these integrals at some selected values in

order to establish their accuracy. Seven s on a Cyber 6400

was required for analysis of a configuration carrying all the

coupling coefficients.

IV. NUMERICAL RESULTS

Figs. 4 and 5 show the power remaining in guide 1

versus yd (unit power in guide 1 and none in guide 2

initially for an incident power of unity) for the present

theory, Abouzahra and Lewin [3] and Trinh and Mittra

[2].1 (Here, d is the separation of the guides including their

width: (d = D + 2a )). Both the symmetric and nonsymmet-

ric cases show that the coupling is substantially smaller

when compared with other theories. Thus, the assumption

of one-to-one coupling between two corresponding ele-

1Comparison with Yariv [12] on a coupler with a long parallel section
and negligible coupling in the curved sections shows Trinb and Mittra’s k
is missing a factor of 1/(1+1/ ya ). With the correction, we let the factor
v be equal to 1 for all cases here.
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Fig. 4. Finaf power at guide 1 versus separation.
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Fig. 5. Final power at guide 1 versus separation.

ments on a pair of nonparallel guides can lead to signifi-

cant errors when yd <1. To further demonstrate this point,

we have included in Fig. 6 the coupling coefficient BI for a

symmetrically, curved, degenerate coupler normalized by

the constant Cl. In the parallel degenerate case, BI/Cl

would be a real constant with exponential dependence on

guide separation. In all the conventional theories for non-

parallel guides which don’t account for the phase term,

B1/Cl would be a real function that exponentially decayed

on either side of z = O (minimum guide separation). This

type of difference exists also in the other coupling coeffi-

cients and leads to the discrepancies of the theories.

It is of interest to note that we found that the total

power was not conserved along the coupler for two very

closely spaced guides where yd is much smaller than 1, or

the physical separation is less than the penetration depth.

This likely indicates a breakdown in the coupled-mode
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Fig. 6. Coupling coefficient ratio B1 /C1 versus Z/a,

approximation that includes only one surface-wave mode

on each guide. Thus, as it stands, none of the existing

theories really is adequate, in designing a circular coupler

that provides a complete transfer of power, without the

inclusion of a parallel coupling section.

APPENDIX I

FIELD OF EACH GUIDE IN ISOLATION

Each guide in isolation is a lossless slab structure sup-

porting a single TE-mode. The two guides have the same

cross section, the same uniform permittivit y and are ex-

cited at the same frequency. With these assumptions, the

field of either guide in isolation will be [8]

EYt = cos ( px, ) e-JBz’

H,, =–L sin ( px, ) e ‘JP’I, Ixil < a
top ()

B
HX, =–— cos ( pxi ) e ‘JP”

up ~

EY, = cos(pa)eYaexp(– ylx,l)e-JPz’

Hz, = =
Ixilapo

cos(pa)e Yaexp[— ylxll]e–J6z’,

B
HX, =–— cos(pa)e Yaexp[ — ylxZl]e–J6°

up ~

(Al)

Ixll>a

(A2)

(A3)

APPENDIX 11

LINEAR APPROXIMATION OF (11)-(14)

{

S1l(Z)+T1l(Z).X, x >0 (near guide 1)
x, =

S12(Z)+T12(Z).X,
(A4)

x <0 (near guide 2)

{( )}
1/2

S1j=R1– R1+; –AJ 2+22

(AJ R1+; –AJ
)— ,,, (A5)

{( )}
Rl+; –Aj 2+Z2

R1+; –AJ
TIJ =

([ 1}

1/2

R1+; –AJ 2+Z2

A1=R1+:–{R:–z2}1’2

(
A2=– R2+:–{R; –z2}1’2

)

(

S21(Z)+T21(Z).X, X>o
X2 =

S22(Z)+T22(Z).X, .%<0

{( ))

1/2

S21= R2+; +Aj2+z2

(
A, R2+; +AJ

)—
1/2

–R2

{( )}
RZ+; +AJ 2+Z2

(

R2+; +AJ
T2J = )

(( )}

1/2

R2+; +AJ 2+22

{

Vl(z)+ul(z). x,

ZI— Z2=

V2(Z)+U2(Z).X,

R1+R2

[

A,. QA
~= z tan-l(a~,)–~

A,
1

X>o

X<o

R1– R2
+

2
[

tan-’ (a,,)-~
B,1

RI+ Rz 4A,
q= ~

R1– R2 @B,
—+

l+a~ 2 1 + a:,

aA, = *( R,-;1+2A,)

-+( R2+R1+D)CXBJ—
q, – Z2

( )(
qJ= R2+; +AJ R&Aj

)

[

~+ (R2-R1+2Aj)2
+A, = -..?.-

qj+zz qj+zz 1+B,= z2( R2+R1+D)(R2 -R, +2 A,)

(~J–z2)

(A19)

(A6)

(A7)

(A8)

(A9)

(A1O)

(All)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)
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{

F’ll(z)+G1l(z)”x, X>o
sinel =

F’IZ(Z)+GIZ(Z)”X, X<()

.L
F1 =

1

{( )}

1/2

R1+; –Aj 2+22

I (Aj R1+; –A1
. l–

)

( )
R1+; –AJ 2+Z2

L
G,, =

{( ))
1/2

R1+; –AJ 2+Z2

L-

( )R1+; –A1 2+Z2

{

F21(z)+G21(z)”x,
sinel =

F22(Z)+G22(Z)”X,

z
F2, =

{( ))

1/2

R2+; +Aj2+z2

X>o

X<o

“l+i!z~’zl
z

G2, =

(( ))
1/2

R2+:+Aj2+z2

(– R2+; +Aj
)

( )
R2+; +A1 2+Z2

{

J1l(z)+K1l(z).x, X>o
cOsel =

J12(z)+K12(z).x, X<o

1
J,, =

((

2

))

1/2

R1+; –A, +Z2

[

(

2

Al R1+; –AJ

. R1+; –
)

( )
R1+; –AJ 2+Z2

1

1
Kl, =

{( ,))

1/2

R1+; –Aj 2+Z2

—z=

( )
R1+; –A1 2+Z2

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(J21(z)+K21(z).x, X>o
cos e2 =

J22(Z)+K22(Z)”X, X<o

1
J2j =

{( ) )

1/2

R2+:+Aj 2+22

[

(

2

Aj R2+~+Aj

. R2+; +
)

( )
R2+; +Aj 2+Z2

1
K2 =

J

(( ))

1/2

R2+; +Aj 2+22
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(A29)

(A30)

“[(R2+LJr+J ‘A31
APPENDIX III

APPROXIWTE COUPLING COEFFICIENTS

By use of the linear approximations similar to those of

Appendix II and the isolated field equations, Appendix I,

the coupling coefficients (7)–(10) for lossless, degenerate,

but not necessarily symmetric, configurations can now be

directly integrated with the following comments.

Equations (7)–(10) call for the vector fields in the x, y, z

coordinate system. For the TE case, the following is easily

shown:

Ei = (o, Ey,o) (A32)

RIs (HXICOSOI + Hz, sin~l, O,– H.l sindl + ~zlcosol)

(A33)

E2 - ( HX2COS 02 – HZ2 sin 62,0, Hx, sin@2 + ~=,cos f32)

(A34)

where HX1, HX2, Hz,, and Hz, are part of the isolated field

equations in Appendix I.

The integrals for Al, A z, Bl, and B2 are O~Y over wide

1 or guide 2 since

elsewhere
:(x, y, Z) —61,2(X, y,z ) = ( (c, ,~~,), in guide 2,1 “

(A35)

All of the coefficients have been divided by the half width

of the guide a. All lengths are in terms of the guide half

width

Al

[ ‘1(,2–,3)ad(pa)ez~”[l+~lz-(~lzl~zz) ~zzl Sinh 2ya;:

22
—.

ya. T12

(i436)
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2. ~–_iMu2-u2(~22/~22)1

[
p’asinh

(paT,,)’+(p’iZ)’

[1

#13ti
~ cos pa + pa. T2Zcosh

22 Hsinpal ‘A37)

where

/3b = yaT12 – jbaU2

[1
cl== 1+~

(ka)’ ya
(A38)

D1 = D:+ D:+ D? + D{’” (A39)

%= ~ /B(i)ex~[G3(~)~][Q(~) +o(~)x]~~(Ado)
‘=l A(i)

Q(i) =P(i)[Pa(J1~+J2~)

– yaj[ikf(i)F1~ + N(i)F2~] (A41)

o(i) =P(i)[Ba(K1k+K2~)

– yaj(M(z)Gl~ + N(i)G,J] (A42)

cos ( pa )
P(i) = ka2 exp[&(2-N(i)

.S2~ – M(z)Sl~ – j~aV~] (A43)

G3(i) = – ya[kf(i)l’l~+ lV(Z)T2~] – jyaf.l~ (A44)

M(l) = N(l)= iv(2)= N(3)= 1 (A45)

M(2) = M(3)= M(4)= N(4)= – 1 (A46)

B(l) =co; ~(l) = (1– sJ/T1k

B(2) = (1 – slk)/T1k, A(2)=0

B(3)=O; A(3) = (1 – S2~)/T2~

B(4) = (–1– S2~)/Tzk, A(4) = - m (A47)

{
k= :’

i=l,2

, i= 3,4
(A48)

‘fl= ,~,~(i)/~1exp[G3(i)x]sin[pax] dx

(A49)

G3(1) = ya[T12/T22 – j/3aU2/T22] (A50)

G3(2) = – ya[T21/T11 – jDaU1/T22] (A51)

Q(1) = –cos(pa)exp(ya) pa/ka2(F,, + G22A2)/T22

-exp [ya(S12 – T12.S22/T22)

– jj?a(V, – U2S22/T22)] (A52)

Q(2) = COS(pa) exp(ya)pa/ka2(F11 + G1lA1)/T1l

. exp [ – a(S21 – T21S11/T11)

[
Dfl = ~ (Jll+ J21+ A1(K1l+ K,I))&

+( J12+J22+ A2(K12+K22))&
)

(A54)

D{’”= ~
ka’

[ 1

. (F12 + A2G12)& - (F21 + A1G21)& (A55)

[[
A2= (cl–t2)cos(pa)eYa exp ya –S21+#

“sll]]exp[-jpa[-vl+ *ul)]’(paT11~+(~’a)2

“[~tisiti[Hc0spa+paTllc0sh[%lsinpal(A56)

where

cos’ pa
B2=–(c1–63)—

[(
exp 2ya 1 – S21

yaT21

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

Jlsinh[-’ya%l
+ +s

11
(A57)

C2 = D: (by inspection of (9) and (10)) (A58)

Dz = Cl (by symmetry). (A59)
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Even- and Odd-Mode Impedances of Coupled Elliptic

Arc Strips

B. N. DAS AND K. V. S. V. R. PRASAD

Abstract —A derivation of the expression for even- and odd-mode im-

pedances of coupled elfiptic arc strips between grounded, confoeat elliptic

cylinders, and above a grounded elliptic cylinder, symmetrically located

with the minor axis, is presented. The analysis is based on TEM-mode

approximation. me Green’s function formulation is used to ob~in va~a-
tionaf expressions for the even- and odd-mode capacitances for the more

general case of different dielectrics on the two sides of the coupled strips.

Nnmerieaf results are presented for coupled elliptic and circular cylindrical

arc strips. It is also shown that the formulation can be used to find the

effec~ of enviromnentat changes on an otherwise planar structure.

I. INTRODUCTION

Some investigations on elliptic and circular cylindrical stnp-
lines have been reported in the literature [1]–[4]. The impedance

of warped lines can be determined from the results of the analysis

of such lines by assuming that the radii of curvature are very
large and the arc lengths remain finite. Wang [1] presented
impedance data of cylindrical and cylindrically watped strip- and

microstrip lines from numerical solution of Laplace’s equation.
He used the results of the analysis to calculate the effect of
environmental changes on the impedance of an otherwise planar
structure. The numerical results presented by him show a marked
deviation from those calculated using the formula for planar
structure. From physical considerations, however, it may be con-
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eluded that the impedance of a warped line should not differ
appreciably from that of an otherwise planar structure. It has
been established that the results obtained by Wang for warped

lines are not correct [2], [4]. It is worthwhile to investigate the

effect of environmental changes on the even- and odd-mode

impedances of an otherwise planar structure. ‘Expressions for

these impedances can be obtained from the Walysis of two

coupled elliptic arc strips between confocal elliptic grounded

cy~nders. To the best of the author’s knowledge, no investigation

on coupled arc strips between grounded elfiptic and circular

cylinders or above such surfaces has been reported in the litera-

ture.

In the present work, a method of derivation of the expressions

for the even- and odd-mode impedances of coupled elliptic and

circular cyfindricrd arc strips between two dielectric layers is

presented. If the transverse dimensions of the structure” are small

compared to the operating wavelength, quasi-TEM-mode ap-

proximation can be used for the analysis. The potential function

for the even- and odd-mode configurations is derived using a

Green’s function formulation and TEM-mode approximation.

Variational expressions for the even- and odd-mode capacitances

are found, assuming suitable charge distribution on the arc strips.

Formulation is made for the general case of elliptic arc st:rips

between two confocal grounded elliptic cylinders. The corre-

sponding expressions for the case of coupled elliptic arc strips

above a grounded elliptic cylinder are found by assuming that the

upper cylinder is moved to infinity. The even- and odd-mode
impedances of coupled cylindrical strtp- and microstripline are

then found from the analysis of +e elliptic line by assuming that

eccentricity is equal to zero.

Numerical results on the even- and odd-mode impedances for

1) coupled elliptic arc strips between grounded elliptic cylinders
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