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Coupled-Mode Theory of Two Nonparallel
Dielectric Waveguides

MARK A. MCHENRY anD DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract —A general theory for treating the coupling between two
nonparallel dielectric waveguides is developed using the coupled-mode
assumption. This theory is used to analyze directional couplers consisting
of two circularly curved, single-mode dielectric slab waveguides. By assum-
ing continuous coupling between the two waveguides rather than only
between adjacent segments on the two waveguides, the present theory
avoids the awkwardness of having to specify in a somewhat arbitrary
manner the separation between these segments, as is the case for existing
theories reported in the literature. It is shown that this over-simplification
results often in an overestimate of the power transfer in a directional
coupler by 10-20 percent, compared to this theory.

I. INTRODUCTION

HE COUPLING between dielectric waveguides has

received much attention [1]-[6] in the last decade in
light of the development of fiberoptics and, more recently,
integrated circuits in the optical and millimeter-wave bands.
Devices needed for future systems such as directional
couplers require that the coupling between waveguides be
understood so performance can be optimized. Although
coupling between parallel guides has been well understood
for some time [7], [8], coupling between nonparallel guides
is still not clearly understood, even though any physically
realizable device must have nonparallel connecting sections
where coupling takes place.

Making the coupled-mode assumption, many authors
use the results of the parallel case (i.e., the amount of
coupling is dependent on guide separation and other
parameters describing each guide in isolation), and pos-
tulate that, in a nonparallel configuration, there exists a
one-to-one correspondence between segments on each guide
with some function giving a “separation” to use in the
parallel results.

Matsuhara and Watanabe [4] assume this distance is
given along a line that intersects the guides at equal angles
(Fig. 1(a)). Abouzahra and Lewin [3], for the symmetric
case, give the distance separating the guides along a line
normal to the plane of symmetry (Fig. 1(b)) while Trinh
and Mittra [2] use the length of an'arc intersecting both
guides at right angles (Fig. 1(c)).
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Fig. 1. Various definitions for separation between individual segments
of two parallel guides.

By trying to stretch the results of the parallel case, we
find not only this problem of determining the “correct”
separation, but we overlook the real physical process of
interacting time-dependent fields. In the parallel case, any
z cross section will have fields with constant phase, while in
the nonparallel situation, the phase will not be constant
and will change as the configuration on either side of the
cross section is changed. Considering only some type of
separation between the guides will not completely describe
the coupling, because the effect one guide has on another
will depend very strongly on the phase, as well as the
strength, of the overlapping fields.

In this paper, coupled-mode theory is developed to
describe any configuration where the coupled-mode ap-
proximation is valid. Approximate coupling coefficients for
circularly bent, lossless, single TE-mode slab waveguides
are worked out allowing analysis of directional couplers
composed of straight and circularly bent slab waveguides.

II. CourLED-MODE THEORY OF TWO
NONPARALLEL WAVEGUIDES

The configuration to be analyzed is shown in Fig. 2. The
two guides can have different cross sections 4; and 4, and
dielectric constants ¢; and e,, but the permeability (p) is
uniform: E,, H, and E,, H, are the two surface-wave
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Fig. 2. Two nonparallel dielectric waveguides.

mode fields each guide supports if the other guide is not
there; £ and H are the time-dependent fields we are
interested in for the complete structure consisting of both
guides. We then define the functions e,(x, y,z) and
€,(x, y, z) to represent the variation in the relative permit-
tivities when only guide 1 and guide 2, respectively, are
presented, i.e.

€..(x,y,2)= ‘1.2
1,235 2 €;,  otherwise

when X € 4, ,

Note that €,(x, y,2z)=¢, (not ¢,) in the region guide 2
occupies and vice versa. &(x, y, z) is the relative permittiv-
ity when both guides exist simultaneously.
The vectors F, and F, can then be defined [1]
Fl,=E ,xH*+ E*xX H,,. )
By using Maxwell’s equations and vector identities, it can
be shown that

)
We make the usual coupled-mode assumption that the
total field of a system of two waveguides can be approxi-

mated in any given cross section by a linear combination of
the individual mode fields

E=m(z)E +my(2)E,
H=m,(z)H, +m,(z)H,

V'F1,2 = jweo(E— €1,2)51,2'E~*-

®3)
(4)
where m,; and m, are the amplitudes of the two modes at

z. Using the vector identity [1] over an infinite cross section
A

fAv-FdAz;%fAF—-édA (5)

we get, from (1) through (5), a set of coupled differential
equations for m;(z) and m,(z)

j[mik(z)Al,Z(Z)'}'mg(z)Bl,Z(Z)]
= 2 [m(2)Coa()+ m3(2)Dra(2)] (6)

where A4, B, C, and D are cross-sectional integrals relating
the two individual mode fields

A1,2(Z) =f_°°°°f—°°w(g(x, y,2)= 51,2(36, ¥ Z))El,z'El* dxdy
(7)
Bl,z(z) zf_wwfjow(g(x’ Y Z)_ E1,2(?‘, Y Z))E—Lz'Ez* dxdy
(8)
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Fig. 3. Global and local coordinate systems.

1 o] 0 r — —
Co(2)= w_ezf.wf_w[El’z X Hy*
+EXx Hy,|-2dxdy (9)
1 — _ _ _
D, ,(z) = &;f—wwﬂEl’z x Hy + Ef x H,,]-2dxdy.

(10)
In general, the coupling coefficients are complex functions
of z except for C; and D,, which are real normalization
parameters.

We now introduce two locally orthogonal coordinate
systems (x,, z;) and (x,, z,) for the two guides as shown in
Fig. 3. If the z dependence of each guide in isolation is
exp[— jB,.22; ], the coupling coefficients of parallel con-
figurations will have simple exp[ — jB’z] dependence (8’ =
constant, possibly zero). In the nonparallel case, the in-
tegration on x at constant z includes a new term of the
form exp[— jB’(z; — z,)], where z; — z, now is a function
of x. This phase term accounts for the interference of the
modal fields which, in the parallel case, does not exist
because all phase fronts are parallel.

Theories currently in the literature either assume that the
coupling coefficients are the same for the parallel case,
except that now the separation is changing in some arbi-
trary manner [3][4], or that the amount of transferred
power depends on the spacing, as in the parallel case, and
define some “equivalent” separation to use at each z cross
section [2]. Both approaches neglect field interference in
the coupling coefficients which, as shown later, can lead to
significant errors. )

We note that the use of equivalent current sources [9],

. or, in the parallel case, the use of variational methods to

find the propagation constant of the system modes [8]
would appear to give different results. However, we have
shown in [10] that the coupled-mode assumption actually
leads to identical expressions for these approaches.

III. AnNALYsIS OF COUPLERS FORMED WITH
CIRCULARLY CURVED SLAB WAVEGUIDES

Fig. 3 shows two lossless, single-TE-mode, circularly
bent slab waveguides and the relationship between the
different coordinate systems. We assume that the radius of
curvature of the slabs is large enough so that the field of
each bent guide in isolation is approximately that of a
straight guide curved about a point. The fields of each
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guide in isolation are given in Appendix I. To evaluate the
coupling coefficients 4, ,, B, ,, Cy,, and D;, in (6), we
have to relate the coordinate system for the guides (x;, z;)
and (x,, z,), to the global coordinate system as follows:

1/2
D _ x \ ( z )2}
1-{[1+ F +
{( 2R1,2 R1,2) R1,2

X12=Ry,
(11)
Z_
_ Ry,
21,= Ry tan”! D * (12)
1+ F =
2Ry Ry,
. z
sing, , = PRRECR. Y (13)
{(RL2 + 7¢x) + 22}
Ry, + —g— Fx
cosf, ,= (14)

2 1/2°
((Ria+ 27x) 22

Simplifying the expression for the coupling coefficients, we
note that the major contribution to the integrals comes
from areas near the guides. Also, to avoid radiation losses,
the radius of curvature of the bent slab waveguides inher-
ently must be large. These two facts allow us to expand
(11)-(14) linearly in x about each of the guides [10] and
find analytic solutions for the integrals in (7)-(10) (Ap-
pendix III). For example

_ {S11(Z)+T11(Z)'x’
b Sw(2)+ Thy(2)x,

x> 0 (near guide 1)
x < 0 (near guide 2)

(15)
where S;; and T;; are given in Appendix II. To solve the
remaining coupled differential equations, a second-order
Runge Kutta [11] algorithm was used. The approximate
coupling coefficients were compared with “exact” numeri-
cal integration of these integrals at some selected values in
order to establish their accuracy. Seven s on a Cyber 6400
was required for analysis of a configuration carrying all the
coupling coefficients.

IV. NUMERICAL RESULTS

Figs. 4 and 5 show the power remaining in guide 1
versus yd (unit power in guide 1 and none in guide 2
initially for an incident power of unity) for the present
theory, Abouzahra and Lewin [3] and Trinh and Mittra
[2].} (Here, d is the separation of the guides including their
width: (d = D +2a)). Both the symmetric and nonsymmet-
ric cases show that the coupling is substantially smaller
when compared with other theories. Thus, the assumption
of one-to-one coupling between two corresponding ele-

! Comparison with Yariv [12] on a coupler with a long parallel section
and negligible coupling in the curved sections shows Trinh and Mittra’s k
is missing a factor of 1/(1+1/va). With the correction, we let the factor
v be equal to 1 for all cases here.
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Fig. 5. Final power at guide 1 versus separation.

ments on a pair of nonparallel guides can lead to signifi-
cant errors when yd <1. To further demonstrate this point,
we have included in Fig. 6 the coupling coefficient B, for a
symmetrically, curved, degenerate coupler normalized by
the constant C,. In the parallel degenerate case, B,/C;
would be a real constant with exponential dependence on
guide separation. In all the conventional theories for non-
parallel guides which don’t account for the phase term,
B, /C; would be a real function that exponentially decayed
on either side of z =0 (minimum guide separation). This
type of difference exists also in the other coupling coeffi-
cients and leads to the discrepancies of the theories.

It is of interest to note that we found that the total
power was not conserved along the coupler for two very
closely spaced guides where yd is much smaller than 1, or
the physical separation is less than the penetration depth.
This likely indicates a breakdown in the coupled-mode
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Fig. 6. Coupling coefficient ratio B, /C; versus Z/a.

approximation that includes only one surface-wave mode
on each guide. Thus, as it stands, none of the existing
theories really is adequate, in designing a circular coupler
that provides a complete transfer of power, without the
inclusion of a parallel coupling section.

APPENDIX 1
FI1eLD oF EAcH GUIDE IN ISOLATION

Each guide in isolation is a lossless slab structure sup-
porting a single TE-mode. The two guides have the same
cross section, the same uniform permittivity and are ex-
cited at the same frequency. With these assumptions, the
field of either guide in isolation will be [§]

E, = cos(px,)e

H, =- 2 sin( px,) e P*, x| <a (A1)
Wity

1
Xy

p— i —J:le
H_ = w‘uocos(px,.)e.

E,, = cos( pa)e™ exp(— 1lx,)e "
Jjrx,

A cos( pa)e™exp[— y|x,[le P, x,|>a
= Tojane cos(pa)e™exp[ = vix ] x|
(A2)

H, =~ L cos(pa)erexpl ~ ylx, e

! Wit o
p?=kie,— B’
72=.32=k(2)€3
tan( pa) = ;— (A3)

APPENDIX 11
LINEAR APPROXIMATION OF (11)-(14)

{ Sl1(Z)+T11(Z)'X,

Slz(z)+T12(z)-x,

x > 0 (near guiderl)

n

(A4)

X

z

x < 0 (near guide 2)

D 2 1/2
S1j=R1—{(R1+7—AJ) +22}

D
A](R1+7—AJ)

- . - = (AS)
{(R1+'2——Aj) +Z2}
P
T,,= - - = (AS6)
{(R1+7—A1) +22}

D 1/2
A1=R1+—2——{Rf—zz} (A7)
A, = (R +12) (R2—z }1/2) (A8)

+T. , >0
5{ 21(2) 21(Z)x X (A9)
22(Z)+T22(Z) X, x<0
1/2
5, (R 3 o)+
D
AJ(R2+?+A])
- — — R, (A10)
D 2 A
{(R2+7+AJ) +z }
(Rt D)
L= D ) 1/2 (A1)
{(R2+7+AJ) +z2}
Vi(z)+U/(z)x, >0
N O ORI (A1)
V(2)+Uy(2)x, x<0
R +R2 _1 'y QAJ
V= 3 [tan (aA)—1+ai
Rl 2 —1 j'quj
tan - Al3
{a (a0)~ T (a13)
R +R, ¢4 R,—R, %3
U= . : (A14)
/ 2 1+ a3 2 1+ a3
V4
aAJ=7’ +22(R2—R1+2A1) (A15)
J
ay =—=—(R,+R,+D) (A16)
i ,nj_z2
D D
nj=(R2+—2—+Aj)(R1+7—AJ.) (A17)
R,— R, +2Aj)’
b, = z 94 (R, 1 i) (A18)
4 'qj+22 'r)j+22
by = ~(R,+ R+ D)(R,— R, +24 )

(A19)
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F(z)+G(z)x, x>0 J. + K X, >0
§in0, = { 1(2)+ 61 (2) (A20) cos®,= { n(2)+Kp(z)x X (A29)
Fiu(2)+Gp(z)x,  x<0 In(2)+Kp(z)x,  x<0
F = Z 1
L D 2 1/2 sz = Y
2
{(R1+7"A1)+Z} {(R2+§+Aj)+z2}
D
J\ T J =
i 2 (A2) b Aj(R2+ : +A,)
2 | Ry+ =+ (A30)
D 2 ) 2 )
Ri+=5—-A | +z2 . D 2
2 7 (R2 +5+A j) +z
2 \
Glj = D 2 1,2 K. = 1
(nessf ) I
{(R2+——+A.) +z2}
D 2
R, + ? - Aj
(A22) 2
D 2 z
(R1+3—A,) 422 — (A31)
R,+ = +A ) + 2?2
i Fu(z)+Gu(z)-x, x>0 ( 2r2
$in@, = (A23)
2 APPENDIX III
le = N 12 APPROXIMATE COUPLING COEFFICIENTS
{(R2 + g +A j) +z* By use of the linear approximations similar to those of
, Appendix II and the isolated field equations, Appendix I,
AR+ D +A the coupling coefficients (7)—(10) for lossless, degenerate,
T\ T A4 but not necessarily symmetric, configurations can now be
1 D 2 (A24) directly integrated with the following comments.
(R2 + 5 +A j) +z? Equations (7)—(10) call for the vector fields in the x, y, z
2 coordinate system. For the TE case, the following is easily
G, = > ) ) shozvn:
{(R2+3+A}.) +zz} E,=(0,E,,0) (A32)
D H,=(H, cosb, + H, sin6;,0,— H, sin6, + H, cos6;)
- (A25) (A33)
(Rz + % + A,) + 22 H,=(H,_cos8,— H, sin6,,0, H, sinf, + H, cosb,)
(A34)
+K . >0
cosO; = Fa(2)+ Kn(2)-, ¥ (A26) where H,, H,, H,, and H, are part of the isolated field
J(2)+Kp(z)-x,  x<0 equations in Azppenldix L ‘
1 The integrals for 4, 4,, B, and B, are only over guide
J, 1= > 5 12 1 or guide 2 since
{(Rl +5 - A,) + z2} 3 B 0, elsewhere
, (x5, 2)—en(x3,2) = (e;,—€), inguide2,1°
- D
D AJ(R1+7—AJ) (A35)
Rt 2 D 2 (A27) All of the coefficients have been divided by the half width
(Rl + 37 A ,) + 22 of the guide a. All lengths are in terms of the guide half
width
1
K L= 1/2 A,

—z -

T
2 2yafl+ S;,— (7 T23)S: : 12
(62—63)008 (pa)e val 12 (T12/Ta2) 22]s1nh [274 : ]

22

(A28) 2T

(A36)
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B1 = (52 - (3)cos(pa)eYae‘fa[Su"(Tu/Tzz)Szz]

z[ﬁ’asmh

[B ]cos pa+ pa-T,,cosh [B ]sm pa] (A37)
T22 22

. e“fﬂa[vz‘“z(szz/Tzz)] 2

(paT22)2+(B’a)

=

where
B'a=yaly, - jBal,
C, = (2151; [1+ Ya] (A38)
D,=D/+ D{+ D/ + D{"” (A39)
) e [63()=1[Q()+0()x] dx  (A40)
0(i) = P(i)[ Ba(Jy + Ty
—vai[M(i)Fy, + N(i) F,,] (A41)
0(i) = P(i)[ Ba( Ky, + Ky
_Yaj(M(i)G1k+N(i)G2k)] (A42)
P(i)= %(a—’j"—)exp[ﬂa(Z—N(i)

Sak— M(i)Slk - JBaVk] (A43)
G3(i)=_Ya[M(i)T1k+N(i)Tzk]“jYaUk (A44)
M(1)=N(1)=N(2)=N(3)=1 (A45)
MQ2)=M3)=M(4)=N4)=-1 (A46)
B(1)=°°; A(l)= (1_S1k)/T1k
B(2)=(1—S1k)/le’ A(2)=0
B(3) =0; A(3) = (1 - SZk)/TZk
B(4)=(-1- SZk)/TZk’ A(4)=—o0 (A47)

k= {; :; 2 (A48)

Dy = ng( )f exp [G3(i)x] sin[ pax]dx
(A49)
G3(1) = Ya[Tyz/Tzz - J;BaUz/Tzz] (A50)
G3(2) = Ya[Tzl/Tu — jBaU, /Ty,] (A51)

(1) = ”COS(P")CXP(Y“)P"/kaZ(Fzz + GzzAz)/Tzz
-€Xp ['Ya(Slz - T12'S22/T22)

~ jBa(V, - U2S22/T22)] (ASZ)

Q(Z) = cos(pa)exp(ya)pa/kaz(Fu +Gyud) /Ty
- €Xp [ - a(S21 - T21511/T11)

— jBa(V,— U, Sy /Tiy)) (AS3)

D,,n

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 11, NOVEMBER 1984

*

Dllll = Ba

ka®

[(Jn + I+ A (K + K21))

B
+ (le +Jp+ AZ(K12 + Kzz));_l—%} (A54)

J'Ya
ka?
A*
[(FIZ + A2(;12) —(Fy + A1(;'21) o ] (A55)
T,
Ay = (¢, ~€;)cos( pa)e™exp [Ya[ Sy + T,

ol ]

[,B a sinh ['B ]cos pa + paTy; cosh [B
11

2ol -
Ty ” (paT11)2+(,B’a)

]sm pa} (A56)

where

(1]
2]

i3]

(4]

[51

[6]
(7

(8]

[9]

[10]
(1]

Ba=—yaT, + jﬂaUl

B,=—(¢— 3)

- )] ! [ TZI]
+ =8, |lsinh | —-2ya—=
T, " T,

exp [2ya (1 Sn

(AS57)

C,=D;  (by inspection of (9) and (10)) (A58)
D,=C, (by symmetry). (A59)
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Short Papers

Even- and Odd-Mode Impedances of Coupled Elliptic
Arc Strips

B. N. DAS anp K. V. S. V. R. PRASAD

Abstract — A derivation of the expression for even- and odd-mode im-
pedances of coupled elliptic arc strips between grounded, confocal elliptic
cylinders, and above a grounded elliptic cylinder, symmetrically located
with the minor axis, is presented. The analysis is based on TEM-mode
approximation. The Green’s function formulation is used to obtain varia-
tional expressions for the even- and odd-mode capacitances for the more
general case of different dielectrics on the two sides of the coupled strips.
Numerical results are presented for coupled elliptic and circular cylindrical
arc strips. It is also shown that the formulation can be used to find the
effect of environmental changes on an otherwise planar structure. ‘

1. INTRODUCTION

~ Some investigations on elliptic and circular cylindrical strip-

lines have been reported in the literature [1]-[4]. The impedance :

_ of warped lines can be determined from the results of the analysis
of such lines by assuming that the radii of curvature are very
large and the arc lengths remain finite. Wang [1] presented
impedance data of cylindrical and cylindrically warped strip- and
microstrip lines from numerical solution of Laplace’s equation.
He used the results of the analysis to calculate the effect of
environmental changes on the impedance of an otherwise planar
structure. The numerical results presented by him show a marked

deviation from those calculated using the formula for planar
structure. From physical considerations, however, it may be con--.

Manuscript received February 27, 1984; revised June 21, 1984.

The authors are with the Department of Electronics and Electrical Com-
munication Engineering, Indian Institute of Technology, Kharagpur-721302,
India.

cluded that the impedance of a warped line should not differ
appreciably from that of an otherwise planar structure. It has
been established that the results obtained by Wang for warped
lines are not correct [2], [4]. It is worthwhile to investigate the
effect of environmental changes on the even- and odd-mode
impedances of an otherwise planar structure. ‘Expressions for
these impedances can be obtained from the analysis of two
coupled elliptic arc strips between confocal elliptic grounded
cylinders. To the best of the author’s knowledge, no investigation
on:coupled arc strips between grounded elliptic and circular
cylinders or above such surfaces has been reported in the litera-
ture.

In the present work, a method of derivation of the expressions
for‘the even- and odd-mode impedances of coupled elliptic and
circular cylindrical arc strips between two dielectric layers is

presented. If the trangverse dimensions of the structure are small

compared to the operating wavelength, quasi-TEM-mode ap-
proximation can be used for the analysis. The potential function
for the even- and odd-mode configurations is derived using a
Green’s function formulation and TEM-mode "approximation.
Vatiational expressions for the even- and odd-mode capacitances
are found, assuming suitable charge distribution on the arc strips.
Formulation is made for the general case of elliptic arc strips
betwéen two confocal grounded elliptic cylinders. The corre-
sponding expressions for the case of coupled elliptic arc strips
above a grounded elliptic cylinder are found by assuming that the
upper cylinder is moved to infinity. The even--and odd-mode
impedances of coupled cylindrical strip- and microstripline are
then found from the analysis of tbe elliptic line by assuming that
eccentricity is equal to zero.

Numerical results on the even- and odd-mode impedances for
1) coupled elliptic arc strips between grounded elliptic cylinders
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